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Abstract

Capsules of micron and sub-micron dimensions are abundant in nature in the form of bacterial or viral capsids and play an increasing role in
modern technology for encapsulation and release of agents. The capsules’ mechanical properties are of great importance in this context not only
for stability but as well for transport properties in flow, rheology or adhesion. Thus, techniques that allow for single-capsule mechanical char-
acterization have caught much attention recently and we summarize experimental developments in this field as well as theoretical background of
capsule deformation with special attention to small deformation measurements. Deformation studies on polyelectrolyte multilayer capsules are
introduced as a case study, since they can be tailored in their geometry and composition and are thus well-suited as a model system.

© 2007 Published by Elsevier Ltd.
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1. Introduction

Research on microcapsules is a highly interdisciplinary
field that benefits from contributions from various branches
of natural sciences and engineering: Already in the thirties bi-
ologists, biophysicists and biochemists developed methods
that allowed for studies on individual cells, launching the field
of microcapsule studies. Research on biological microcapsules
remains highly vital and a source of innovation nowadays but
has been complemented by research on artificial microcapsule
systems. Progress in material sciences allowed production of
microcapsules whose structure and composition are controlled
on the nanoscale [1—6]. To achieve this goal similar mecha-
nisms to those occurring in natural systems, like supramolec-
ular self-assembly, were exploited and most artificial
microcapsule systems are to some degree biomimetic. Poten-
tial applications of such artificial systems are in most cases
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linked to encapsulation and release or protection of agents
like medicine, fragrances, dyes or flavour additives. Microcap-
sules can thus be found in fields as diverse as medicine, cos-
metics, food design or coating of textiles/paper to mention
just a few examples. Probably the most dynamic area of arti-
ficial microcapsule development is related to drug delivery ap-
plications. Here the aim is to develop ‘“‘intelligent” capsule
systems containing medical agents that recognize and adhere
to infected regions in the body and allow for targeted localized
release of the medical agents in these regions only, thus limit-
ing side effects [7—9]. Designing microcapsules for specific
tasks requires understanding and controlling their physico-
chemical properties. Key characteristics are adhesion proper-
ties, permeability of the capsule membranes and mechanical
properties. In this review we focus on the latter aspect.
Mechanical properties of microcapsules are obviously im-
portant for stability issues. In applications of both biological
and artificial systems microcapsules have to provide enough
robustness to avoid membrane rupture due to wear and tear.
For artificial microcapsules, membrane rupture can in contrast
serve as a pathway for fast and efficient release and might thus
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be desired under certain conditions. Stability is not ensured by
simply increasing the elastic modulus of the material. Instead,
microcapsules must be tailored in their complex deformation
characteristics rather to efficiently perform their tasks. The
great variety of mechanical properties of natural microcap-
sules nicely illustrates this fact [10]: red blood cells are
made from membranes with the lowest bending resistance
known to man but still are highly resistant against stretching
[11]. This allows them squeezing through capillaries with
only 10% of their diameter without any damage. These me-
chanical properties are vital for their biological function. For
example the symptoms of malaria and sickle cell anaemia
are to a large extent caused by the fact that the deformability
of blood cells is changed by parasites and mutation, respec-
tively [12]. Fig. 1 illustrates the deformation differences be-
tween malaria infected and healthy red blood cells.

Virus capsids in contrast are highly rigid with typical elastic
constants similar to those of glassy polymers and can with-
stand pressures due to encapsulated material up to 100 atmo-
spheres [14,15]. Apart from stability issues, mechanical
properties influence the microcapsule-behaviour in an indirect
fashion in many processes of interest. Microcapsule compli-
ance for example plays an important role in adhesion: when
microcapsules are adhering to surfaces a complex interplay
between surface interactions, which favour establishing a con-
tact area between capsule and surface and mechanical defor-
mation energies, which resist capsule deformation, take
place. Thus cell mechanics is well known to play a dominating
role in cellular adhesion [16,17] and recent examples show
that adhesion properties of artificial microcapsules can be
tailored by their mechanical properties [18—22].

Another process where compliance comes into play is the
transport behaviour through channels or close to adhesive sur-
faces [23]. Phenomena like leukocyte rolling are believed to
be closely connected to the mechanical properties of the in-
volved cells [24]. Recently, theoretical models for artificial
microcapsules under rolling conditions have been introduced
[25—28], which suggest novel applications for microcapsule
sorting based on their mechanical properties.

While numerous techniques exist to probe the (macro-
scopic) rheological properties of suspensions containing
capsules, there is a limited number of tools to analyse mechan-
ical properties of micron-sized capsules on the single-capsule
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Fig. 1. Single red blood cells in a stretching experiment. Two colloidal particles are attached to the RBC and subsequently stretched by optical forces. The top row
shows a healthy RBC under increasing stretching force, the bottom row a RBC which was infected by a malaria parasite. When both cells are exposed to the same
forces the reduced ability of the infected cells to stretch becomes clear. Image from Ref. [13]; copyright 2004 Acta Materialia Inc.; reprinted with permission of
Elsevier Sci. Ltd.

level. In the following, we will give a brief overview of these
techniques which does not aim on completeness but rather on
providing key citations and reviews for further reading. Later,
the physics of capsule deformation will be discussed in more
detail. In particular, the differences between measurements
where large and small deformations as compared to the mem-
brane thickness are applied will be in the center of interest
here. Finally we will focus on current experimental results
of small deformation measurements using the atomic force
microscope and discuss perspectives of this approach.

2. Techniques for measuring microcapsule mechanics
in single-capsule-experiments

Historically, the first single-capsule experiments were car-
ried out on egg cells by Cole [29]. The cells were compressed
between two parallel plates and the force was monitored as
a function of the compression. From these data, the presence
of an elastic cell membrane could be demonstrated and its
2D elastic modulus was estimated. Later, the setup was further
refined allowing in particular shape monitoring during com-
pression [30—36]. Fig. 2 shows a typical parallel plate-com-
pression experiment with optical control of the shape changes
during deformation and simultaneous force measurement.

The cell poking technique is a variation of this approach,
where cells resting on surfaces are indented by a stylus rather
than compressed by a second plate [37—39], see Refs. [40] and
[41] for reviews. Similar indentation based techniques have
been used for synthetic microcapsules recently [42].

The advent of the atomic force microscope has provided
a tool that is ideally suited for increasing the sensitivity of in-
dentation and plate-compression measurements to sub-micron
deformations. In particular the colloidal probe AFM tech-
nique, which was independently developed by Butt [43] and
Ducker [44], can be adapted such that a deformation geometry
similar to a parallel plate system is achieved: The microcap-
sule is resting on a flat surface and compressed from above.
Rather than a second flat plate, a colloidal particle of large ra-
dius of curvature is used to press onto it. The technique allows
measurements of large deformations (in the order of the typi-
cal capsule dimension) or small deformations (in the order of
the membrane thickness). Large deformation measurements
with AFM-based setups were first carried out by Smith and
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Fig. 2. Series of video images during capsule compression. Top row: side view, bottom row: top view. Images from Ref. [36]; copyright 2003 John Wiley and Sons,
Inc.; reprinted with permission of Wiley-Liss, Inc., a subsidiary of John Wiley and Sons, Inc.

coworkers [45] and later by Vinogradova (see Ref. [46] and ci-
tations therein). We were the first to apply the colloidal probe
method for measurements of small deformations [47] which is
in many cases necessary to obtain quantitative information on
material parameters like the Young’s modulus. Measurements
of small deformations can also be performed with sharp AFM-
tips rather than colloidal probes, as it was demonstrated by
various authors [48,49]. A literature overview on these cell-in-
dentation measurements can be found in Refs. [50] and [51].

The micropipette technique was used with great success in
the field of lipidic vesicles [52] and for the deformation anal-
ysis of simple cells like red blood cells [53]. A micropipette
with an inner diameter of several microns is used to suck
the microcapsule with a defined, hydrostatically controlled
pressure. The deformation of the object is monitored with op-
tical microscopy as a function of the applied suction pressure.
From the analysis of the shape as a function of the applied
pressure, the elastic properties of the membrane can be de-
rived. In particular, bending and stretching elastic constants
were measured this way. Ref. [54] can serve as a starting point
for further reading.

For extremely soft membranes that show thermal shape
fluctuations, mechanical properties, in particular bending elas-
tic constants, can be derived from analysis of these fluctua-
tions. This has been demonstrated for red blood cells and
lipidic vesicles. The shapes can be monitored interferometri-
cally (so called flicker spectroscopy) [55—57] or by phase
contrast microscopy [58,59].

Recently, several methods that allow manipulating colloids
with electromagnetic fields have been developed. Usually,
membrane properties are probed by attaching beads to the
membrane of interest and manipulating the bead [13,60—67].
Optical tweezers are most widely used for this approach
[62—66], a review on applications in biology can be found

in Ref. [68], recent biomedical applications are highlighted
in Ref. [12]. Magnetic tweezers have as well been successfully
applied [61]. Recently also setups where cells are directly
stretched by light have been presented [69—71]. Typically
the forces that can be achieved are in the range 1pN
(=102 N) to several 100 pN, which makes these methods
an attractive complementary tools for the AFM related tech-
niques or the micropipette, where higher forces are applied.
For rather large microcapsules, elastic constants can be de-
rived by monitoring shape changes in flow by optical micro-
scopy. Chang and Olbricht probed capsule deformations in
shear flow [72] for synthetic microcapsules. Shear flow causes
elongation of the microcapsules and thus membrane stretch-
ing, which can be quantified if the shear rates are known.
More recent experiments are reported in Refs. [73] and [74].
An unexpected observation is the occurrence of membrane
wrinkling in shear flow (Fig. 3) [75]. This phenomenon was
recently explained quantitatively and can serve as an alternate
route towards estimating elastic constants [76,77]. A method
that is as well limited to rather large microcapsules that are
filled with materials which differ in density from the environ-
ment is the use of spinning drop rheometers [78]. Here centri-
fugal forces cause an oblate deformation of the rotating
microcapsule. A more thorough overview over methods ex-
ploiting flow/inertia effects can be found in Ref. [79].

3. Theory of capsule deformation

Hollow, thin walled capsules are examples of curved struc-
tures with a very small extension in one spatial dimension.
Such curved surface structures are generally termed shells
and their mechanical behaviour is studied by shell theory
[23,80—82]. The reason for the widespread use of shells in na-
ture and technology is that the curvature of the structure allows
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Fig. 3. An artificial microcapsule before and during deformation in shear flow. Shear causes wrinkling of the membrane with a characteristic wrinkle periodicity,
which can be used for measuring the membrane’s elastic properties. Image from Ref. [75]; copyright 2001 Elsevier Science B.V.; reprinted with permission of

Elsevier Sci. Ltd.

a mechanical efficient use of the material by carrying transver-
sal loading mainly by in-plane action. The main theoretical ap-
proach is to consider the wall material as a continuum. As
a consequence no absolute length scale enters the theoretical
description. The theory is therefore the same in describing
the mechanics of e.g., microcontainers or domes of European
cathedrals. The results obtained from structural engineers
looking for efficient light-weight structures [83] can therefore
be transformed to applications in chemistry and biology.

An important simplification is based on the fact that the
thickness of the structure is much smaller than the other two
dimensions. This allows a “dimensional reduction” of the
problem describing the shell by its two-dimensional middle-
surface. Once the two-dimensional problem is solved, the clas-
sical Kirchhoff—Love assumptions allow the ‘“‘extension” in
the third dimension: points on the same normal to the unde-
formed middle-surface stay on the same normal also after de-
formation, and the displacements are the same for all points at
the same normal, i.e., shear deformation across the shell wall
is neglected [82].

The deformation of the shell is either an in-plane stretching
and shear or an out-of-plane bending. Depending on which of
these deformation modes are most important and are allowed,
different theories have been developed with specific applica-
tions. The characteristic of biological membranes is their
low resistance to bending and shearing so that they deform ei-
ther in pure bending or in-plane shear. The shape can be pre-
dicted by minimization of a Helfrich-type Hamiltonian [84],
which includes the mean and Gaussian curvature to describe
the local geometry of the membrane and the bending rigidity
k and the Gaussian curvature modulus as material parameters
[85,86]. The low value for £, e.g., k = 1071 J=10 — 20 kT at
ambient temperatures [17] gives rise to thermally activated
shape fluctuations of the membrane in order to increase their
configurational entropy [87]. In engineering a ‘“‘membrane”
is defined by being incapable of conveying moments. A mem-
brane is therefore the two-dimensional analogue of a flexible

string with the exception that it can resist compression. The
in-plane membrane stresses can be determined by the condi-
tion of mechanical equilibrium only (see below), i.e., they
are statically determined. The results of membrane theory
therefore apply to all shells independent of the material
they are made of. The general theory of shells [82], whose
main ideas are outlined below and whose results for the case
of a sphere which will be discussed afterwards, includes the
effects of both, stretching and bending.

The mechanical problem of shell deformation can be
summarized in the following set of equations [82]:

(i) kinematic equations which relate the displacement
vector of each point of the middle-surface with the
strain tensor (describing the in-plane stretching) and
the bending tensor (describing the out-of-plane de-
formation);

(ii) the equations of mechanical equilibrium for the effec-
tive membrane stress tensor and the effective moment
tensor;

(iii) the constitutive equations characterizing the material in
relating stress and strain state;

(iv) force or displacement boundary conditions which spec-
ify the actual loading of the shell.

To exploit the two-dimensionality of the problem it is ad-
vantageous to use curvilinear coordinates instead of Cartesian
coordinates to formulate the kinematic equations (i). The dis-
advantage of this choice is that basic results of differential ge-
ometry have to be employed. Effective stress tensors are used
in the formulation of (ii) to ensure their symmetry [82]. As-
suming in (iii) a material that obeys Hooke’s law and that is
isotropic, i.e., characterized by two material constants like
Young’s modulus E and Poisson ratio n, for thin shells the
strain tensor is only related to the effective membrane stress
tensor and the bending tensor only to the effective moment
tensor. Proportionality constants are two characteristic
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quantities, the extensional stiffness (1) and the bending stiff-
ness (2).

Eh
7721_71}2 (1)
ER}
i) .

Note that the thickness of the shell, 4, which is assumed to
be small, enters with different exponents in the mechanical
parameters characterizing the ability of the shell to resist
stretching and bending. The 7 has the dimension of an energy
per area, and the contribution to the energy is calculated by
a multiplication of n with the strain squared followed by an in-
tegration over the whole surface. Assuming the very simple
case of a homogeneous expansion of a sphere by displacing
all the points by d [88], the corresponding strain would be
d/R and the stretching energy per area would therefore be
given by Eq. (3).

d 2
Estretch xn (ﬁ) (3)

The bending stiffness « already has the dimension of energy.
The bending energy is calculated by multiplication of k by
the square of the change in curvature followed again by an
integration over the surface. The change in curvature is pro-
portional to d/R?, therefore the energy of pure bending per
area can be estimated by Eq. (4).

d 2
Ebend XK <ﬁ> (4)

The ratio between the two energy contributions Eq. (5) [88],

R\ 2
“(3) 5)
is consequently quite large for thin shells. When the shell
allows a deformation without stretching, this deformation
mode will be realized being energetically favourable, a state-
ment also referred to as Love’s principle of applicable surfaces.
A well known result, however, is that for spherical capsules
deformation modes without stretching are not possible.

In classical shell theory analytical solutions can be obtained
only for simple shell geometry and simple loading conditions.
In our context an important analytical result is the deformation
of a spherical shell under point loads on its poles [82,89].
Close to the pole the solution turned out to be equivalent to
the simple result found for shallow spheres by Reissner
[90,91]. The normal displacement of the pole, d, under point
loading with force P is given by Eq. (6).

E stretch
Ebend

3(1-1%) PR

=

Assuming a value for the Poisson ratio v = %, we obtain the
numerical prefactor and thus Eq. (7).

PR
d=0.40825 (7)

Away from the pole the analytical solution corresponds to the
membrane solution [89], showing that the bending is limited to
a restricted area around the concentrated force. An estimation
of how local this bending is as a function of capsule geometry
can be obtained by a simple energy argument: the linear di-
mension of the bent area, denoted by a, is determined by the
requirement that the sum of stretching and bending energies
attains a minimum (note that the bending contribution is
proportional to Kg—jaz, where the last factor comes from the
integration over the bent area). For the spatial limitation of
bending one obtains [88]

ax<VhR,

which means that a reduction of the shell thickness results in
even more local deformation by bending.

To employ the analytical results of shell theory one has to
be aware of the underlying assumptions and the limitations
following from them. Most important is that the validity of
Eq. (6) is restricted to small deformations, an assumption re-
ferred to as small-perturbation hypothesis [92]. This hypothe-
sis implicates the tremendous simplification that the
equilibrium conditions are not formulated in the deformed
state, which is unknown and has to be determined, but in the
known undeformed state, i.e. the initial spherical shape of
the capsule. For thin shells deformations can be considered
“small” when they are about the thickness of the shell wall.
In the design of experimental procedures, which make use
of analytical results in their interpretation, attention has to
be paid to restrict the capsule deformation to the region of
small deformations and measure within this region as accurate
as possible (see following sections). For a dimensional reduc-
tion to a surface problem, the shell has to be assumed “‘thin”.
Classical thin shell theory is applicable as long as the ratio be-
tween wall thickness and shell radius is smaller than 1/10
[93]. Considering a wall thickness of 25 nm, the capsule radius
should be larger than 0.25 pm, which is doubtlessly fulfilled
for the capsule systems discussed below. For the material a lin-
ear relation between stress and strain was assumed. Non-
Hookean models like a Neo-Hookean model or more general
a Mooney-Rivlin model have to be used to describe rubber-
like materials, specifically at larger deformations [94,95].

The large deformation behaviour of spherical shells under
a point load is dominated by buckling, i.e., the formation of
a region of reversed curvature [96—98], which grows with in-
creasing deformation. This type of deformation minimizes the
stretching of the shell (Fig. 4).

Under the assumption that the deformation energy is local-
ized on the rim of the formed dimple [100], Pogorelov ob-
tained the following result Eq. (8) for the deformation under
a point load P [101].
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Fig. 4. Deformation of a spherical shell under a point load (loading situation prior to deformation as indicated on left hand side scheme). The shell reacts with
a buckling instability for forces above a critical force. Image from Ref. [99]; copyright 2001 Elsevier Science B.V.; reprinted with permission of Elsevier Sci. Ltd.

2\2 p2p2
g U =r) PR (8)
356 EW
In contrast to Reissners’ solution for very small deformations
Eq. (6) after buckling and formation of a dimple the deforma-
tion is no longer linear with the force, but quadratic.

An important extension of the spherical shell model, in
particular for biological applications, is to consider that the
capsule is not empty, but filled with fluid. To be more precise,
a filled shell with vanishing permeability of the shell material
is assumed. Evidently, the case of an empty shell is equivalent
to a filled shell for a wall material of infinite permeability
when inertia effects are neglected, while a finite permeability
causes complex deformation-rate dependent effects. The in-
compressibility of the fluid inside the shell requires volume
conservation at all times during deformations. For a point
load force significant contributions to the potential energy
arise from edge bending around the rim of the dimple, stretch-
ing due to the increase of fluid pressure inside the capsule, and
the work of the applied load [102]. Fig. 5 shows a comparison
between experiments performed with a racquetball (h/R =
0.167, thick shell!), both empty and filled with water, and an-
alytical calculations based on axisymmetric thin shell theory.
For empty shells the deformation of the shell is accurately
predicted for deformations of 25% of the radius, before shear
deformation, which is neglected in thin shell theory, lead to
a softening of the real shell. The filling of the shell does not
cause any difference for deformations up to 20% of the radius
in comparison with an empty shell. This region is therefore
governed mainly by bending. The effect of the displaced fluid
becomes significant only for even larger deformations. An in-
teresting behaviour of the shell stiffness as a function of shell
geometry, /R, was predicted. For a shell with a given thick-
ness A, the shell stiffness increases with decreasing shell radius
in the small deformation regime. At larger deflections, the
strains are actually smaller for larger spheres. But since the
strained area is proportional to R?, the combination of both ef-
fects results in a larger shell to be stiffer than the smaller one
[102].

Often biological cells are not just filled with fluid, but the
fluid is under increased osmotic pressure, the so called turgor
pressure. Laplace’s relation gives the connection between

pressure p, and the surface tension s, o xpR. Starting from
the general expression of the shape energy of a membrane
with bending rigidity [103], an extended plate-equation was
formulated and solved to describe the deformation within
a confined region of cut-off radius a [104—106]. Depending
on the dimensionless expression ¢ = ga®/k, a bending-domi-
nated (§ < 1) or a tension-dominated regime (£>>1) have
to be distinguished [107]. The calculations took into account
the finite radius of the indenter tip.

Real experimental loading conditions may deviate from the
theoretical point load force scenario. Two important cases are
the compression between two parallel plates and the exposure
to external or internal isotropic pressure. In case of the parallel
plates, an approximate analytical solution can be obtained by
separating the deformation into the regions of plate-membrane
contact and the non-contact regions [94,95]. Also under
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Fig. 5. Load-deflection for a racquetball with #/R = 0.167 (experiment) com-
pared with calculations based on thin shell theory. The experiments were per-
formed with empty shells (circles) and water filled shells (squares). Image
from Ref. [102]; copyright 1982 American Society of Mechanical Engineers;
reprinted with permission of ASME International.
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isotropic external pressure buckling of the spherical shell oc-
curs. Under the assumption that the empty shell loses stability
when the work done by the external pressure equals the de-
formation energy, the critical pressure, p., for the onset of
buckling is given by Eq. (9) [101,108].

-k ©)
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Based on the assumption that the deformation is concentrated
at the rim of a dimple, predictions can be obtained whether the
shell displays one large dimple, or several smaller ones [109].
The case of swelling of the capsule due to an internal osmotic
pressure is discussed in Ref. [46]. Additional forces can act on
the capsule from its interaction with a substrate. The problem
of adhesion and deformation under adhesion [110,111] is of
technological importance.

For a detailed analysis of large deformation of capsules
with a general loading geometry numerical methods have to
be employed. The loss of stability at the onset of buckling
also remains a challenging problem for numerical methods.
Two main numerical methods are used, on the one hand finite
element modelling, a standard numerical tool for engineers,
and on the other, elastic networks of triangulated surfaces,
a model preferentially used in the physics community. The fi-
nite element method (FEM) is efficient in finding approximate

7227

solutions for the partial differential equations of continuum
mechanics in complex geometry. The method is well docu-
mented in several textbooks [112—114], and commercial soft-
ware packages are available. A finite element analysis of the
deformation behaviour of spherical shells in the context of hol-
low sphere metal foams can be found in [115]. Using FEM the
experimental conditions of a colloidal probe AFM force spec-
troscopy measurement was modelled. A polyelectrolyte mi-
crocapsule was compressed not by a point force but by
a rigid sphere of large radius compared to the capsule radius.
The calculations showed that the solution of Reissner Eq. (6)
is also applicable for this loading geometry, even over a defor-
mation range given by a few multiples of the shell thickness
[116]. To reduce the computational effort, symmetries of the
solution are often assumed, e.g., in the case of axisymmetric
loading the solution also should display this symmetry. Evi-
dently this excludes the description of deformation states char-
acterized by symmetry breaking (see Fig. 6).

Although in FE calculations the geometry is discretized in
“finite elements”, results should be independent of the chosen
discretization. This is routinely tested using different mesh
sizes. A similar argument holds for triangulated network
models, where an increase in the number of triangles renders
a more accurate description of a spherical capsule. Especially
appropriate and therefore employed are network models in
simulations of systems which exhibit by design a discretized
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geometry. Wonderful examples from nature are virus capsids
and crystalline surfactant vesicles. The structure of most virus
capsids corresponds to triangulated icosahedra consisting of
pentavalent and hexavalent morphological units and therefore
resembling in its topology fullerene molecules, like that dis-
played in Fig. 7.

In network models the vertices — corresponding to viral
capsomers — are connected by harmonic springs with spring
constant k and equilibrium distance r(y. The total energy in-
cludes contributions from stretching and bending and is given
by Refs. [117—119]

k 2 & 2
H=E3 (=] =)'+ 3 (=m0,

<ij> <IT>

where sums extend over the nearest neighbour vertices (trian-
gular surfaces) 7 and j (/ and J) and n; denotes the normal vec-
tor of a triangular surface. The parameters k and g are related
to the two-dimensional Young’s modulus, Y, and the bending
rigidity, k, via Y = 2k/+/3 and k = \/3g/2, respectively. An
important dimensionless parameter, characterizing the me-
chanics of the capsule as a ratio between stretching and
bending contributions, is the Foppl—von Karméan number
v = YR?/k, R again the radius of the capsule. It was demon-
strated that the value of vy determines the equilibrium shape of
the triangulated shell. For roughly v < 130 the shells display
a rounded shape, whereas for larger values of vy, the pentava-
lent units in the structure become unstable leading to a faceting
of the shell [118]. Based on these results it was hypothesized
that shape changes observed in viral capsids can have their
reason in changes of the Foppl—von Karman number. Using
elastic network models the mechanical properties of shells
of icosahedral symmetry under uniaxial compressive load
applied by a sphere were studied. Depending on v, in the sim-
ulations two globally different force—deformation scenarios

Fig. 7. Triangulated network model with pentavalent (blue) and hexavalent
elements idealizing a virus structure. The plot aside demonstrates the
Caspar—Klug classification of poligonalised spheres: two non-negative inte-
gers (h and k) describe the minimum number of translations on two distinct
spherical geodesics to arrive from one pentavalent element at a neighbouring
one (h=1 and k=2 in the depicted case). Image from Ref. [117] (for inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article); copyright 2006 American Physical Society;
reprinted with permission of the American Physical Society.

have been observed. For small y a linear dependence of the force
on the deformation was found. For larger values of y the shell
undergoes a buckling transition. Whereas large shells could be
well described by classic continuum shell theory, small shells
of the size of typical viral capsids behaved differently already
for small deformations [119]. The approach of triangulated
networks and studies of their buckling transitions have been
applied to capsids with non-icosahedral symmetries [120], for
shells under the constraint of volume conservation [117] and
in connection with adhesion to a substrate [110]. In all these
cases mechanical energy is assumed to dominate over thermal
contributions. In the case of very soft shells thermal shape fluc-
tuations have to be taken into account (see, e.g., Ref. [121]).

4. Small deformation measurements: experimental results

Small deformation experiments on microcapsules are of
particular interest for microcapsule characterization for two
main reasons. First, in large deformation experiments, the
larger strains to which the microcapsules are exposed to can
cause irreversible deformations for plastic materials. Thus
large deformation experiments are in this case often destruc-
tive while in small deformation experiments, strains below
the plasticity limit can be used, allowing for non-destructive
measurements. Second, in large deformation experiments,
the (changes or conservation) of the internal microcapsule vol-
ume plays an important role. While this is not a problem for
strictly impermeable membranes, often microcapsule mem-
branes are found to show finite permeability for the encapsu-
lated medium/solvent on the timescale of the experiment. In
this case, the internal volume change has to be taken into ac-
count to derive the membrane properties from the experiment.
This requires assumptions on the permeability which are not
straight forward and difficult to check with independent
methods, especially if permeability of small molecules like
water is concerned. In contrast, volume changes are higher
order effects in small deformation measurements and no
assumptions on permeability are necessary.

As mentioned above, no absolute length scale enters the
theoretical description of shell deformation, and indeed for
testing mechanical models, experiments on macroscopic ob-
jects are well-suited. One example is experiment on the com-
pression of ping pong balls carried out by Pauchard (Fig. 8)
[122,123], where the material constants are well known and
comparison with shell theory can be made.

To perform small deformation experiments, independently
of the shell size, deformations in the order of the shells’
wall thickness have to be applied. If microcapsules are the
subject of investigation nanometer control of the deformation
is necessary, as typical wall thicknesses are between 1 and
100 nm. This poses enormous technical requirements, which
have only been met by recent technological developments.

Optical tweezers were first used for microcapsule deforma-
tion measurements that could be quantitatively interpreted in
terms of elastic constants. Helfer and coworkers investigated
the deformation of actin coated vesicles and found clear signa-
tures of a buckling instability [63—65].
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Fig. 8. Ping pong balls are good macroscopic examples for shells as they dis-
play the main features of shell deformation (linear elastic response at deforma-
tions in the order of the wall thickness followed by buckling instabilities at
larger deformations). Image courtesy S. Komura, (Tokyo Metropolitan Univ,
Fac Sci, Dept Chem, Tokyo 1920397, Japan).

The most widely used device for small deformation mea-
surements is the atomic force microscope (AFM), which will
be in focus in the following. It provides a broader dynamic
force range between several 107" N and 10 °N combined
with deformation resolutions better than 1 nm. In order to probe
elastic constants of microcapsules with an AFM, the microcap-
sules have to be immobilized on a solid support. Subsequently,
a force—deformation measurement is performed, during which
the AFM-probe exerts a known force on the pole of the micro-
capsule while the deformation is monitored. The force is mea-
sured by monitoring the deflection of the AFM-cantilever, after
suitable calibration of the cantilever’s spring constant
[124,125]. The deformation can only be inferred indirectly;
by reference measurements on non-deformable surfaces (usu-
ally the substrate is used as a reference).

For a part of the measurements reported in the following, in-
stead of a sharp AFM tip, a colloidal probe AFM setup was
used. In the colloidal probe method, that was developed earlier
by Butt [43] and Ducker [44], a colloidal particle of diameter of
several microns is glued to a tipless AFM-cantilever and used
as a probe. The main reason for the use of the colloidal probe
technique is that the geometry of the contact between capsule
and cantilever is well defined and that high stresses on the mi-
crocapsule as they arise for sharp AFM-tips are avoided.

5. Case study: polyelectrolyte multilayer capsules

Polyelectrolyte multilayer capsules (PMCs) are well-suited
as a model system to study the characteristics of microcapsule
deformation and demonstrate at the same time the advantages
of the small deformation approach. Therefore we will report
on recent experiments on this system in the following in
more detail before giving an overview on other experiments
using the small deformation approach.

PMCs are formed by template-assisted self-assembly on
solid particles. The microcapsule production process here is

based on the layer-by-layer self-assembly [Ibl-sa], which was
first introduced by Decher and coworkers as a surface coating
technique [126,127]. Polyelectrolyte multilayers can be built
up on charged surfaces by alternating adsorption of positively
and negatively charged polyelectrolytes from aqueous solution.
For many polyelectrolyte combinations, the total thickness of
the surface coating is linear in the number of deposition cycles,
with a thickness increase per polyelectrolyte layer pair in the
order of nanometers. The thickness of the layer is thus very
well defined and tunable. Hollow capsules can be produced
by a two-step process [128]. First colloidal particles are coated
using Ibl-sa, then the core particles are dissolved under condi-
tions that do not destroy the multilayer shell. Composition and
thickness of the shell walls can be controlled with a precision
that is comparable with the case of solid-supported lbl-esa
films. Additionally, the capsules have the same shape and
monodispersity as the template particles. This makes them
one of the best-defined capsule systems with respect to these
parameters that are currently available (Fig. 9). While due to
the stepwise deposition process, one would intuitively expect
a laminated structure of the layers, for the majority of polyelec-
trolyte multilayers a strong interdigitation is found and the wall
material can therefore be treated as homogeneous [126].
Recent reviews on the subject can be found in Refs. [3,4]. In
the following we will discuss deformation experiments of
PMCs from polyallylamine and polystyrene-sulfonate (PAH/
PSS) in water, which is the most widely used system.
Concerning the deformation properties, this system poses
severe problems for large deformation measurements. The
PAH/PSS capsule system was previously studied by two

Fig. 9. Polyelectrolyte multilayer capsules offer well defined radius and wall
thickness, combined with broad versatility of composition. Here, multiple
fluorescent labels were integrated in the wall, which could allow for recogni-
tion and tracking of capsules in flow cytometry. Image from Ref. [4]; copyright
2003 Capsulution Nanoscience AG; reprinted with permission of Capsulution
Nanoscience AG.
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groups. Baumler and coworkers used micropipette sucking
[129] and found that these microcapsules show, unlike for ex-
ample lipid vesicles, no shape changes up to a critical pres-
sure. After the critical pressure, irreversible collapse of the
capsules was observed. Gao [108,130] used osmotic pressure
to trigger capsule collapse and could successfully describe
the collapse as a buckling transition. In both cases, deforma-
tion experiments were thus destructive and irreversible.

The capsules show no mechanism that ensures volume con-
servation, which would have suppressed the buckling transi-
tion. Volume exchange between inside and outside happens
on a timescale in the order of seconds. Permeability of the
capsule membrane for water seems to be rather large. Per-
meability plays an important role for large deformation mea-
surements, which we have discussed in detail in Ref. [131]:
for an impermeable capsule, the dominating term in the defor-
mation energy stems in this case from the stretching of the
capsule membrane which occurs due to conservation of the en-
capsulated volume. For a permeable capsule, this conservation
is only partial and depends on the permeability of the mem-
brane. Thus, the capsule stiffness mainly reflects the perme-
ability properties on the timescale of the experiment, and
not the membrane’s mechanical properties. Both the plasticity
and the permeability problem can be overcome using the small
deformation approach as explained in the following.

Fig. 10 shows a typical force—deformation relation of an
individual microcapsule in water. The microcapsule presents
a linear force—deformation relation for deformations in the or-
der of the capsule wall thickness as well as a rather complex
deformation behaviour including step-like instabilities for
larger deformations.

In order to understand the reason for the instabilities in the
deformation behaviour, a combination of colloidal probe AFM
with reflection interference contrast microscopy (RICM) turns
out to be useful. The AFM setup is installed on top of an in-
verted optical microscope. In this way, it is possible to monitor
the contact zone between the colloidal probe and the (transpar-
ent) substrate with reflection interference contrast microscopy
[132,133]. Fig. 11 shows a schematic of the setup, further
experimental details can be found in Ref. [47].

Thus shape changes can be correlated with the forces acting
on the shell. Using this approach, it can be shown that the in-
stabilities at larger deformations correlate with buckling events
like that displayed in Fig. 6 [47,134]. In small deformation
measurements, however, such instabilities are avoided, which
can be checked by the microinterferometry information. Apart
from capsule shape tracking, microinterferometry can be also
used to ensure symmetric capsule loading conditions.

If the experiment is limited to small deformations, a simple
linear force—deformation relation is observed. The deforma-
tion is fully reversible and thousands of experiments can be
carried out on the same capsule. This non-destructivity allows
following dynamic processes. The linearity of the force—
deformation relation is indeed expected for a membrane
with non-vanishing bending stiffness. According to Reissner
[90,91], the deformation d is related to the force P, the capsule
radius R, the wall thickness 4, the Young’s modulus E and the
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Fig. 10. Blue symbols: experimental force—deformation characteristic of
a PAH/PSS capsule of 25 nm dry thickness and 7.9 pum radius in water. Dotted
line: Reissner’s result for deformations up to 50 nm (valid for a thin, shallow
shell). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Poisson Ratio n via Eq. (6). While this relation is strictly valid
only for a point force load at the apex of a shallow spherical
cap, it is also a good approximation for this loading situation
(a shell compressed by a large sphere) as revealed by finite
element modelling [116].

Because in the microcapsule system, both the capsule ra-
dius and the capsule wall thickness can be varied, the validity
of the Reissner approach can be tested by checking the scaling
of the capsule stiffness (k = P/d) with these parameters. In
Fig. 12, measured k-values for capsules with different radius
R and wall thickness /& are compiled to form a master plot.
One can clearly see, that £ is indeed proportional to the square
of the membrane thickness 4 and inversely proportional to the
capsule radius R, as predicted by Reissner. This also means
that surface tension or other interactions between the wall
and water phase play in this case no important role since their
contribution should not depend on wall thickness and would
thus result in an offset of k£ at 2~ = 0, which is within the accu-
racy of the measurement not detectable. Another consequence
is that the mechanical properties of the wall are compatible
with a homogeneous wall model. This is in fact expected,
since the individual layers are strongly inter-digitated [126].

Thus, the elastic properties of the capsule wall can be deter-
mined, as all parameters except for the wall materials’ Young’s
modulus and Poisson ratio can be measured independently.
The Young’s modulus of PAH/PSS capsules in pure water is
found to be in the order of several hundred mega pascals
[135], which is in good agreement with independent measure-
ments on flat layers by others [136].

These experiments offer several advantages as measure-
ments can not only be carried out in solvent, but solvent prop-
erties like salt concentration [135], pH [137] or temperature
[138] can be varied during the mechanical properties’ probing.
Due to the non-destructive nature of the measurement, changes
in mechanical properties can even be followed in situ for



A. Fery, R. Weinkamer | Polymer 48 (2007) 7221—7235 7231

Colloidal probe

afm setup

substrate supported

microcapsule . S O

inverted optical
microscope

e

N\

Fig. 11. A is a schematic sketch of a colloidal probe AFM setup for microcapsule compression. The microcapsule is immobilized on a flat substrate and is com-
pressed by a large colloidal particle (the particle diameter is large as compared to the capsule), which is glued to an AFM-cantilever. The cantilever is integrated
into the AFM setup. The optical microscope below allows high-resolution imaging of the contact zone. B is a typical microinterferometry image of the capsules’
contact zone, C shows the same capsule under an applied load which increases the contact area.

individual capsules. The rate dependency of deformation prop-
erties merits special attention, when studying viscoelastic
membranes. A nice example of such a system is shown in
Fig. 13 where PMCs are probed below and above the glass tran-
sition of the wall material. In the high temperature case k is rate
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Fig. 12. Master plot for deformation experiments: the microcapsule stiffness is
multiplied with the shell radius and plotted versus the square of the membrane
thickness. The data from microcapsules of different radii collapses onto a mas-
ter curve. Red triangles: shells with 9.6 um radius, blue squares: shells with
7.85 pum radius. Dashed line: best linear fit (for interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article).

dependent while at room temperature no rate dependency is
observed. The rate of deformation can be varied by 2—3 orders
of magnitude with existing setups.

6. AFM-based small deformation experiments,
an overview

The basic experimental features reported above are not spe-
cific for this particular capsule system but are, in fact, rather
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Fig. 13. Stiffness of capsules (normalized to stiffness at deformation rate
0.3 Hz) at room temperature (closed symbols) and at 70 °C (open symbols)
as a function of the deformation rate (no rate dependency is observed for low
temperature while a pronounced rate dependency is observed at 70 °C, indicat-
ing viscoelastic properties). Image from Ref. [138]; copyright 2005 American
Chemical Society; reprinted with permission of the American Chemical
Society.
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universal for capsules of various compositions and dimensions
and the continuum mechanical concepts hold even down to
systems with nanometer thickness.

Deformation experiments on solid-supported gel state
liposome-vesicles made from dipalmitoyl-phosphatidylcholine
(DPPC) with radius between 50 and 200 nm show similar lin-
ear force—deformation characteristics as reported above [139].
The vesicle stiffness k scales inversely proportional to the
vesicle radius R, as found for the PMCs. Elastic constants of
the DPPC membrane were thus calculated and compared
favourably with independent measurements [140].

In biological systems, much attention has recently been
attributed to deformation measurements of individual virus
capsids [15]. Using approaches analogous to the Reissner ap-
proach, elastic constants of the capsid shell were determined.
Pronounced differences between empty and filled capsids
[141] or young and matured viruses [142] were detected.

These measurements reveal a special feature of the virus
capsids which are not strictly spherical but have a facetted
structure. This can cause deviations from the Reissner defor-
mation characteristics [117,119]. Indeed, measurements on
facetted catanionic vesicles indicate that faceting causes pro-
nounced reinforcements, which might play an important role
in increasing virus stability [143].

The deformation of tubes shares many similarities with
capsule deformation and several AFM-based experiments of
tube-like structures have been reported recently. Tubes, like
capsules, present a linear force—deformation relation followed
by buckling instabilities upon compression. Similar to the
capsule case, scaling laws, which nevertheless differ from
the capsule case can also be derived for tubes [144]. Indeed,
buckling instabilities were experimentally found for microtu-
bules [144] and for self-assembled protein nanotubes
[145,146]. Again the tubes’ stiffness in the pre-buckling
regime served as a measure of the wall materials’ elastic con-
stants. Recently, the scaling behaviour predicted by de Pablo
and coworkers was confirmed for polyelectrolyte multilayer
hollow tubes of variable radius [144,147,148].

7. Conclusion

Mechanical characterization of individual microcapsules is
a field of growing importance at the border of biophysics and
material sciences, combining both theoretical and experimen-
tal challenges. We gave in the first part of the paper a broad
overview which aims not at depth but rather at providing first
key references to the reader. In the second part, we focused on
a particular novel approach, namely small deformation exper-
iments on shell structures.

The standard theoretical approach is to employ continuum
mechanics in the form of shell theory. The complexity of the
partial differential equations allows analytical solutions only
under strong simplifications. One important exception is
when only small deformations are considered, e.g., the result
of Reissner for a spherical shell under a concentrated load.
Improved computational resources and algorithms facilitate
a numerical treatment of shell deformation problems. Finite

element models and spring network models nowadays are
widely and successfully used. The consideration of defects
in the shell wall material and the instabilities connected with
buckling events of the shell structure remain, however, a chal-
lenge for computational models.

Experimentally, this approach has experienced a boost with
the advent of novel techniques which allow for nanoscale
deformation experiments. In particular the atomic force micro-
scope has in this context been used in the past years with much
success. We discussed in detail results on artificial microcap-
sules made from polyelectrolyte multilayers, which can serve
as a model system with adjustable and well defined radius,
wall thickness and composition. However, various examples
from biology and materials science demonstrate the generality
of the approach. The main advantages of performing small
deformation experiments are that capsule deformation be-
comes independent of permeability properties and that non-
destructive experiments can be carried out on materials with
a low elastic limit. As well, microcapsules with diameters as
low as 30 nm have already been probed which are inaccessible
with other approaches.

Still, many new fundamental questions and experimental
challenges have been raised about investigating systems of
even smaller dimensions. One critical issue, where theoretical
descriptions beyond purely continuum mechanics are needed,
is the effect of surface tension on deformation. This effect was
shown to be negligible in some cases [116], but it significantly
affects deformation properties especially when the radii of cur-
vature become smaller and large surface tensions are present
[149]. For charged systems, membrane tensions can arise
from (Coulomb) self-repulsion which has been found to result
in swelling of microcapsules upon changes in salt concentra-
tion [150], pH [137,151—154] or temperature [150,155]. Re-
cently, the first theoretical descriptions of these phenomena
have been presented [156,157] but their impact on deforma-
tion properties is still subject of current research. Finally,
many materials in nature are not homogeneous, but rather
composites which pose additional challenges and perspectives
in developing systems with tailored and switchable defor-
mation properties. On the experimental side, much interest
exists in expanding the deformation-rate over a broader range,
as it is the case in mechanical testing of macroscopic poly-
meric materials. At the same time, the power of in situ optical
access during deformation is just emerging and much further
development is to be expected in this direction in the near
future.
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